
www.manaraa.com

ANONYMOUS BIOMETRIC ACCESS CONTROL BASED ON HOMOMORPHIC
ENCRYPTION

Ying Luo, Sen-ching S. Cheung, and Shuiming Ye

Center for Visualization and Virtual Environments
University of Kentucky, Lexington KY 40507

ABSTRACT

In this paper, we consider the problem of incorporating
privacy protection in a biometric access control system. An
Anonymous Biometric Access Control (ABAC) system is
proposed to verify the membership status of a user using
biometric signals without knowing his or her true identity.
This system is useful in protecting the privacy of authorized
users while keeping out potential imposters and attackers. In
our proposed system, we employ homomorphic encryption
to protect the probe biometric and propose a Secure Simi-
larity Search (SSS) algorithm to authenticate the probe in an
anonymous way. We demonstrate our proposed system using
a gallery of iris biometrics and show the efficiency of the
implemented anonymous biometric matching performed in
encrypted domain.

Index Terms— Biometric Access Control, Privacy Pro-
tection, Anonymity, Homomorphic Encryption

1. INTRODUCTION

Providing anonymity is one of the central themes of privacy
protection. From obfuscating and removing identity informa-
tion in images [1] to anonymizing emails and postings [2],
many systems have been developed to protect the privacy of
individuals in a variety of digital mediums. On the other end
of the spectrum are the myriad of Biometric Access Control
(BAC) systems that are available to control allocation of re-
sources based on the identity of the user. As a biometric signal
is based on “who you are” rather than “what you have”, BAC
systems excel in authenticating a user’s identity. The use of
BAC systems, however, creates a conundrum for privacy ad-
vocates as the knowledge of the identity in the system makes
it hard to keep users anonymous.

A moment of thought reveals that many access control
systems do not need the true identity of the user but simply
require a confirmation that the user is an authorized member.
A typical example will include those service providers that
provide free or flat-rate services to their clients. For example,
an online movie vendor may have a category of “VIP” mem-
bers who pay a flat monthly membership fee and can enjoy

an unlimited number of movie downloads. While it is im-
portant to verify the VIP status of a user, it is unnecessary to
precisely identify who the user is. In fact, it will be appeas-
ing to customers if the vendor can provide a guarantee that
it can never track their movie selections. Another example is
a community electronic message board. Only the members
of the community can sign in to the system. Once they sign
in to the system, they can anonymously post messages and
complain to the entire community. Both examples can benefit
from an access control system that can verify the member-
ship status using biometric signals while keeping the identity
anonymous. This is the primary design goal of the Anony-
mous Biometric Access Control (ABAC) system proposed in
this paper.

In this paper, we introduce an ABAC system based on ho-
momorphic encryption. The probe biometric is protected by
homomorphic encryption so that the biometric server cannot
directly examine the probe. On the other hand, we devise
a hamming distance based Secure Similarity Search (SSS)
module so that the biometric server can compute the ham-
ming distance entirely in the encrypted domain between the
probe and each of the records in the gallery. With the help of
a non-colluding commodity server, the biometric server can
compare the computed distances with a pre-defined similarity
threshold without leaking any information about the gallery
or the probe to the commodity server. The outcome of SSS is
a single bit from the commodity server to the biometric server
indicating whether the user is a member of the server. While
this provides anonymity to the user, it opens door to possi-
ble collusion between the commodity server and an imposter.
To protect the system against such attacks, multiple rounds of
SSS are carried out with the outcomes of some of the rounds
secretly controlled by the biometric server. It can be shown
that this strategy makes the probability of the success of such
attacks arbitrarily small.

The main contributions of this paper are the introduction
of the ABAC system concept and a practical design of such a
system using iris biometrics. There are other works that deal
with the privacy and security issues in biometric systems but
their focus are different from this paper. A privacy-protecting
technology called “Cancelable Biometrics” has been pro-
posed in [3]. To protect the security of the raw biometric



www.manaraa.com

signals, a cancelable biometric system distorts a biometric
signal using a specially designed non-invertible transform so
that similarity comparison can still be performed after distor-
tion. Biometric Encryption (BE) described in [4] possesses
all the functionality of Cancelable Biometrics, and is immune
against the substitution attack because it outputs a key which
is securely bound to a biometric. The BE templates stored in
the gallery have been shown to protect both the biometrics
themselves and the keys. All the above technologies focus
on the security and privacy of the biometric signals in the
gallery: instead of storing the original biometric signal, they
keep only the transformed and noninvertible feature or help
data extracted from the original signal that do not compro-
mise the security of the system even if they are stolen. In all
these systems, the identity of the user is always recognized
by the system after the biometric matching is performed. To
the best of our knowledge, there are no other biometric access
systems that can provide access control and yet keep the user
anonymous.

This paper is organized as follows. Section 2 provides an
overview of the proposed ABAC system and proves that the
ABAC is privacy-protected and probabilistically secure. Sec-
tion 3 presents the implementation details of the SSS module.
Experiment results and discussions are presented in Section
4. We conclude this paper with prospect for the future work
in Section 5.

2. SYSTEM OVERVIEW

In our proposed system, the biometric server, Bob, has
a gallery that stores the biometric signals {X1, . . . , XN}
of N members where Xi is a binary vector denoted as
(xi

1, . . . , x
i
n). The user, Alice, provides a probe q = (q1, . . . , qn)

for logging into the system and produces a match if there ex-
ists an unique i where i ∈ {1, . . . , N} such that d(q,Xi) < ε
for a similarity threshold ε. While our setting is general for
arbitrary biometric signals, we will focus on iris recognition
as described in [5]. In this case, d(q,Xi) denotes a modified
Hamming distance as described in Section 3. Both Alice
and Bob are assumed to be semi-honest and computationally-
bound – they follow the protocols faithfully but will try to
gain as much information about the other as possible. Ho-
momorphic encryption is denoted as Enc(x, pkC) where x
is the plaintext and pkC is a well-advertised public key. We
also need a commodity server, Charlie, which assists Bob
in the matching process and is the only party that possesses
the secret key skC for decryption. Charlie is assumed to be
semi-honest and non-colluding with Bob. However, we do
not assume Charlie to be trustworthy with either the probe or
the gallery.

A high-level description of our proposed system is given
by Algorithm 1. Step 2 of Algorithm 1 is a key component
which we call Secure Similarity Search (SSS). Only a brief
outline is provided in step 2 and more details can be found in

Algorithm 1 ABAC System
Require: Bob: Xi, i ∈ {1, 2, . . . , N}, ε and M ; Alice: q; Charlie:

pkC

Ensure: Bob confirms Alice’s membership
1: Alice encrypts q and NOT (q) with pkC bit by bit and sends
Enc(qi, pkC) and Enc(NOT (qi), pkC) to Bob for i =
1, . . . , n

2: SSS: (1) Bob computes the encrypted distance
Enc(d(q,Xi), pkC) for i = 1, . . . , N ; (2) Bob and
Charlie jointly compute the encryption of each bit in the binary
representation of d(q,Xi); (3) Bob randomly sets ε′ := ε or
ε′ := 0 with equal probability and computes Enc(cik, pkC) for
i = 1, . . . , N and k = 1, . . . , dlog2 ne, where cik = 0 for any
k = 1, . . . , dlog2 ne indicates that d(q,Xi) < ε′

3: Bob sends Enc(cik, pkC) for i = 1, . . . , N and k =
1, . . . , dlog2 ne to Charlie in random order.

4: Charlie decrypts them, computes a :=
∏

i,k c
i
k and sends back

to Bob.
5: If ε′ = 0 and a = 0, or ε′ = ε and a 6= 0, Bob immediately

rejects Alice and exits the program.
6: M := M − 1 and return to step 2.3 unless M = 0
7: Bob confirms Alice’s membership

Section 3. As later demonstrated, our SSS step can guarantee:
(1) Charlie will not gain any information about the gallery
Xi for i = 1, . . . , N , the probe q and the similarity thresh-
old ε; (2) Bob will not gain any information about the probe
q. At the end of the SSS step, Bob computes Enc(cik, pkC)
where cik = 0 for any k = 1, . . . , dlog2 ne indicates that
d(q,Xi) < ε′. As Charlie possesses the secret key skC , Bob
sends Enc(cik, pkC) to Charlie for decryption. The sending
order is scrambled so that Charlie does not know which user
produces a match, if any. In step 4, Charlie computes and
sends to Bob a :=

∏
i,k c

i
k which will be 0 if and only if there

is a match. Since Bob only knows the value of a, he can-
not identity the record that produces the match. On the other
hand, Charlie can help an imposter by seting a to 0. How-
ever, if Bob uses ε′ = 0 in step 2.3, Bob knows that there
should not be a match and the reception of a = 0 will indi-
cate an attack. Step 5 ensures that an imposter has to guess
which ε′ Bob uses correctly for allM times in order to launch
a successful attack. Suppose we want to keep the probability
of admitting an imposter to be less than ζ, we simply need
M = d− log2(ζ)e rounds.

3. SECURE SIMILARITY SEARCH (SSS)

This section presents the implementation details of SSS, the
key step in Algorithm 1. There are three sub-steps in SSS:
Hamming distance computation, bit extraction, and threshold
comparison, all of which are implemented in encrypted do-
main. In all the three sub-steps, both addition and multiplica-
tion are required in encrypted domain which can be satisfied
by Paillier cryptosystem utilizing its key homomorphic prop-



www.manaraa.com

erties [6]:

Enc(m1, pk) · Enc(m2, pk) = Enc(m1 +m2, pk)(1)
Enc(m, pk)a = Enc(am, pk) (2)

Also note that Paillier cryptosystem is one of the most
commonly used homomorphic encryptions and provides se-
mantic security, i.e., encrypting the same plaintext twice will
result in two different ciphertexts with high probability.

3.1. Hamming Distance

The modified Hamming distance used for iris recognition in
[5] is as follows:

d(x, y) =
‖ (x⊗ y) ∩maskx ∩masky ‖

‖ maskx ∩masky ‖
(3)

In (3), ⊗ denotes XOR, ∩ AND, and ‖ · ‖ the norm of the bi-
nary vector. x and y are the binary vectors that represent the
iris codes. maskx and masky are the corresponding mask
binary vectors that mask the unusable portion of the irises
due to occlusion by eyelids and eyelash, specular refections,
boundary artifacts of lenses, or poor signal-to-noise ratio. We
assume that the mask vectors do not disclose identity infor-
mation and thus Alice can send her mask vector in plaintext
to Bob. As the division in Equation (3) may introduce float-
ing point number, we focus on the following distance and roll
the denominator into the similarity threshold during the later
stage of comparison.

d(x, y) =‖ (x⊗ y) ∩maskx ∩masky ‖ (4)

Algorithm 2 computes the hamming distance (4) between q
and Xi for i = 1, . . . , N . It is clearly secure as all the opera-
tions are done in the encrypted domain.

Algorithm 2 Hamming Distance
Require: Bob: Xi, i ∈ {1, 2, . . . , N}, Enc(qk, pkC),

Enc(NOT (qk), pkC), k ∈ {1, 2, . . . , n}
Ensure: Bob computes Enc(d(q,Xi), pkC) for i = 1, . . . , N

For i = 1, . . . , N , repeat the following two steps:
1: Compute Enc(qk ⊗ Xi

k, pkC) for k = 1, . . . , n using the fol-
lowing observation: Enc(qk ⊗ Xi

k, pkC) = Enc(qk, pkC) if
Xi

k = 0 and Enc(NOT (qk), pkC) otherwise
2: Compute Enc(d(q,Xi), pkC) =

Enc
(∑

k:[maskq∩maskXi ]k=1 qk ⊗Xi
k, pkC

)
=∏

k:[maskq∩maskXi ]k=1Enc(qk ⊗Xi
k, pkC)

3.2. Bit Extraction

The second step of SSS is to extract each bit from d(q,Xi)
for i = 1, . . . , N to be used in the threshold comparison.
Even though q and Xi are n-dimensional binary vectors, the

length of their hamming distance d(q,Xi) is at most dlog2 ne.
As bit extraction cannot be expressed in terms of summation
and multiplication, Bob requires the assistance of Charlie to
carry out the task. The idea is to have Bob randomly perturb
the data before sending them to Charlie for decryption – it
is possible for Bob to compute Enc(d(q,Xi) + r, pkC) with
a random number r in the encrypted domain. The plaintext
d(q,Xi) + r, however, does not leak any information about
d(q,Xi) to Charlie. Charlie then performs the bit extraction,
encrypts it and sends it back to Bob. The trick is for Bob
to undo the perturbation. This can be done by starting the
operation at the least significant bit (LSB) of d(q,Xi). The
recovery can be done by XORing [d(q,Xi) + r]1 and r1. We
then zero out the LSB of d(q,Xi) before moving onto the next
round to recover the second LSB. As the LSB is zero, it has
no effect to the second LSB and we can recover all the bits
by repeating this procedure as described in Algorithm 3. The
algorithm is secure because Charlie cannot gain new informa-
tion as a new random number is used in each round, and Bob
cannot gain new information as he only handles encrypted
data.

Algorithm 3 Bit Extraction of d(q,Xi)
Require: Bob: Enc(d(q,Xi), pkC) and random source; Charlie:

Dec(·, skC)
Ensure: Bob computes Enc([d(q,Xi)]k, pkC) for

k = 1, . . . , dlog2 ne
1: Start with the least significant bit by setting k := 1 and
Enc(d, pkC) := Enc(d(q,Xi), pkC)

2: Bob generates a random number r, computes Enc(d+ r, pkC)
and sends it to Charlie.

3: Charlie decrypts Enc(d + r, pkC), re-encrypts the k-th bit
Enc([d+ r]k, pkC) and sends back to Bob.

4: Bob recovers Enc(dk, pkC) = Enc([d(q,Xi)]k, pkC) by not-
ing that it equals to Enc([d + r]k, pkC) if rk = 0 and
Enc(NOT ([d+ r]k), pkC) otherwise.

5: Bob zeros out the kth bit of d by performing Enc(d, pkC) :=

Enc(d−dk ·2k−1, pkC) = Enc(d, pkC)·Enc(dk, pkC)−2k−1

6: Set k := k + 1 and return to Step 2 unless k = dlog2 ne

3.3. Threshold Comparison

In the final step of SSS, we need to determine if

d(q,Xi) < ε′· ‖ maskq ∩maskXi ‖ (5)

where d(q,Xi) is the modified Hamming distance defined in
(4). Based on the encrypted bit representation of d(q,Xi) ob-
tained in Section 3.2 and the actual bit representation εik :=
[ε′· ‖ maskq ∩maskXi

‖]k, we adopt the secure compari-
son protocol proposed by Damgard, Geisler and Kroigard in
[8], which results in the computation of Enc(cik; pkC) where
cik = 0 for some k ∈ {1, . . . , dlog2 ne} if (5) is satisfied. The
full algorithm is shown in Algorithm 4. We refer the reader to
[8] for detailed explanation and proofs.



www.manaraa.com

Algorithm 4 Secure comparison
Require: Bob: Enc([d(q,Xi)]k, pkC), εik for k = 1, . . . , dlog2 ne
Ensure: Bob computes Enc(cik; pkC) such that cik = 0 for some

k ∈ {1, . . . , dlog2 ne} if (5) is satisfied.
1: For k ∈ {1, . . . , dlog2 ne}, compute Enc(wi

k, pkC) :=
Enc([d(q,Xi)]k ⊗ εik, pkC) by using the fact that
Enc(wi

k, pkC) = Enc([d(q,Xi)]k, pkC) if εik = 0 and
Enc(NOT ([d(q,Xi)]k) , pkC) otherwise.

2: For k ∈ {1, . . . , dlog2 ne}, compute Enc(cik, pkc) :=

Enc
(
[d(q,Xi)]k − εik + 1 +

∑dlog ne
j=k+1 w

i
j , pkC

)
. This can be

done in the encrypted domain as it involves only addition and
subtraction.

4. EXPERIMENT

To evaluate the performance of the proposed system, we use
the CASIA Iris database collected by the Chinese Academy
of Sciences Institute of Automation (CASIA) [9]. Based on
the Matlab feature extraction code from [10], we obtain the
databases of both the iris codes and the mask codes. Each
iris code is n = 9600 bit long. The gallery contains codes
N = 100 users and the similarity threshold ε is set to 0.35.
For each probe signal, we run the verification M = 20 times
resulting in a probability of 10−6 in admitting an imposter.
The key length of the public key cipher is set to be 1024 bit.
Each 9600-bit iris code is encrypted bit by bit with the cor-
responding 2048-bit ciphertext. The networking time is as-
sumed to be negligible compared to the computation time. It
takes 27.1 minutes on average to perform the entire compu-
tation procedure for a single query on a linux machine with
AMD Athlon 64, 2.4 GHz and 2GB memory. The time mea-
surement for each of the key step in our algorithm for a single
round of computation is provided in Table 1. The most time
consuming process is the bit extraction since it includes mul-
tiple rounds of decryption and encryption with a new random
number for each round in Algorithm 3. While the matching
process is too slow to be used in real applications, our initial
focus is the security of the system. We are currently investi-
gating the optimization of various components of the system.

Table 1. Time measurement for one single round
Processing Steps Time (second)
1. Alice encrypts q and NOT (q) 289.922
2. Secure Similarity Search 175.718

2.1 Hamming Distance 9.528
2.2 Bit Extraction 124.001
2.3 Threshold Comparison 42.189

3. Decryption of cik 17.946

5. CONCLUSION

In this paper, we propose an anonymous biometric access con-
trol system that can anonymously authenticate the member-
ship status of a user via his or her biometric signals. We be-
lieve that such a system should find widespread applications
in e-commerce as users continue to demand stronger measure
of privacy protection. There are a number of areas we are cur-
rently exploring to improve the performance of the system.
For instance, by exploiting the fact that all the records in the
gallery are compared with the same probe, we are studying
how to pack multiple bits into the same ciphertext for parallel
manipulation. Additionally, we plan to incorporate the im-
proved Paillier homomorphic encryption in [8] which uses a
smaller finite field for encrypted domain arithmetic for faster
performance.

6. REFERENCES

[1] E. N. Newton, L. Sweeney, and B. Main, “Preserving privacy
by de-identifying face images,” IEEE transactions on Knowl-
edge and Data Engineering, vol. 17, no. 2, pp. 232–243, Febru-
ary 2005.

[2] C. Diaz, Anonymity and Privacy in Electronic Services, Ph.D.
thesis, Katholieke Universiteit Leuven, 2005.

[3] N.K. Ratha, J.H. Connell, and R.M. Bolle, “Enhancing security
and privacy in biometrics-based authentication systems,” IBM
Systems Journal, vol. 40, no. 3, pp. 614–634, 2001.

[4] S. Hoque, M. Fairhurst, G. Howells, and F. Deravi, “Feasibility
of generating biometric encryption keys,” Electronics Letters,
vol. 41, no. 6, pp. 309–311, 2005.

[5] John Daugman, “How iris recognitionworks,” IEEE Trans,
CSVT, 14(1), 21-30.

[6] P. Pailler, “Public-key cryptosystems based on composite de-
gree residuosity classes,” Proceedings of International Con-
ference on the Theory and Application of Cryptographic Tech-
niques (EUROCRYPT 99), vol. vol. 1592, pp. 223–238, May
1999.

[7] J. Katz and Y. Lindell, Introduction To Modern Cryptography,
Chapman and Hall, 2008.

[8] I. Damgard, M. Geisler, and M. Kroigard, “Homomorphic en-
cryption and secure comparison,” International Journal of Ap-
plied Cryptography, vol. 1, no. 1, pp. 22–31, 2008.

[9] T. Tan and Z. Sun, “Casia-irisv3,”
http://www.cbsr.ia.ac.cn/IrisDatabase.htm, 2005.

[10] Libor Masek and Peter Kovesi, “Matlab source code for a bio-
metric identification system based on iris patterns,” The School
of Computer Science and Software Engineering, The Univer-
sity of Western Australia., 2003.


